8 research outputs found

    Temporal And Spatial Turbulent Spectra Of MHD Plasma And An Observation Of Variance Anisotropy

    Get PDF
    The nature of magnetohydrodynamic (MHD) turbulence is analyzed through both temporal and spatial magnetic fluctuation spectra. A magnetically turbulent plasma is produced in the MHD wind tunnel configuration of the Swarthmore Spheromak Experiment. The power of magnetic fluctuations is projected into directions perpendicular and parallel to a local mean field; the ratio of these quantities shows the presence of variance anisotropy which varies as a function of frequency. Comparisons among magnetic, velocity, and density spectra are also made, demonstrating that the energy of the turbulence observed is primarily seeded by magnetic fields created during plasma production. Direct spatial spectra are constructed using multi-channel diagnostics and are used to compare to frequency spectra converted to spatial scales using the Taylor hypothesis. Evidence for the observation of dissipation due to ion inertial length scale physics is also discussed, as well as the role laboratory experiments can play in understanding turbulence typically studied in space settings such as the solar wind. Finally, all turbulence results are shown to compare fairly well to a Hall-MHD simulation of the experiment

    Turbulence Analysis Of An Experimental Flux-Rope Plasma

    Get PDF
    We have previously generated elongated Taylor double-helix flux-rope plasmas in the SSX MHD wind tunnel. These plasmas are remarkable in their rapid relaxation (about one Alfven time) and their description by simple analytical Taylor force-free theory despite their high plasma beta and high internal flow speeds. We report on the turbulent features observed in these plasmas including frequency spectra, autocorrelation function, and probability distribution functions of increments. We discuss here the possibility that the turbulence facilitating access to the final state supports coherent structures and intermittency revealed by non-Gaussian signatures in the statistics. Comparisons to a Hall-MHD simulation of the SSX MHD wind tunnel show similarity in several statistical measures

    Numerical Modeling Of Magnetohydrodynamic Activity In The Swarthmore Spheromak Experiment

    Get PDF
    Results from a three-dimensional axisymmetric resistive magnetohydrodynamic (MHD) simulation are compared to experimental data from the Swarthmore Spheromak Experiment (SSX) [M. R. Brown, Phys. Plasmas 6, 1717 (1999)]. The MHD simulation is run under conditions and with dimensionless parameters similar to the experiment (Lundquist number S=1000, plasma beta beta =0.1). The simulation is shown to reproduce global equilibrium magnetic field profiles of the spheromaks as well as much of the detailed reconnection dynamics measured when two spheromaks are merged. It is concluded that SSX merger dynamics may be characterized as MHD reconnection, with the likelihood that extensions are needed to account for kinetic effects in the associated current sheet. High spatial and temporal resolution MHD simulation data will be used as input for a particle orbit and energization code. (C) 2001 American Institute of Physics

    Calibrated Cylindrical Mach Probe In A Plasma Wind Tunnel

    Get PDF
    A simple cylindrical Mach probe is described along with an independent calibration procedure in a magnetized plasma wind tunnel. A particle orbit calculation corroborates our model. The probe operates in the weakly magnetized regime in which probe dimension and ion orbit are of the same scale. Analytical and simulation models are favorably compared with experimental calibration. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3559550

    Three-Dimensional Reconnection And Relaxation Of Merging Spheromak Plasmas

    Get PDF
    Plasma relaxation inside a highly conducting cylindrical boundary is studied both experimentally and computationally. Dynamics are initiated by the introduction of two equal helicity spheromaks at either end of the cylinder. In the experiment, dense, high-magnetic-flux spheromaks are injected into the flux conserving volume with magnetized plasma guns. In the simulation, identical spheromaks initially occupy both halves of the cylinder and a perturbation is introduced. Merging commences with a single three-dimensional null-point that moves radially out of the flux conserving volume at velocities up to 0.2 of the reconnection outflow velocity. Relaxation to the minimum energy state occurs in about ten Alfven times. An important conclusion is that even though the dynamical activity is limited to a few modes, this activity is sufficient to promote relaxation to the final, minimum energy state. The dynamical activity appears to conserve magnetic helicity while magnetic energy is converted to flow and heat. The final state arrived at dynamically is identical to that described by C. D. Cothran et al. [Phys. Rev. Lett. 103, 215002 (2009)] using static, eigenvalue analysis. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3492726

    Energetic Particles And Magnetohydrodynamic Activity In The Swarthmore Spheromak Experiment

    Get PDF
    Results from the Swarthmore Spheromak Experiment (SSX) [M. R. Brown, Phys. Plasmas 6, 1717 (1999)] indicate that formation and partial merging of two spheromak plasmas can be described well by a magnetohydrodynamic (MHD) picture in which there is substantial evolution towards force free states within each vessel, while reconnection activity, also described reasonably well by MHD, occurs in the region of interaction. MHD simulations [V. S. Lukin , Phys. Plasmas 8, 1600 (2001)] support and provide further detail to this interpretation. In the present study, test particle equations are integrated using MHD data from SSX simulations to further understand the energetic particle fluxes that are observed experimentally. The test particle simulation is run with dimensionless parameters similar to the experiment, and particles are permitted to escape when they encounter the simulated SSX boundaries. MHD activity related to reconnection is responsible for accelerating charged particles. The process includes two phases-a strong but short duration direct acceleration in the quasi-steady reconnection electric field, and a weaker longer lived stochastic component associated with turbulence. (C) 2001 American Institute of Physics

    Observation Of A Nonaxisymmetric Magnetohydrodynamic Self-Organized State

    Get PDF
    A nonaxisymmetric stable magnetohydrodynamic(MHD) equilibrium within a prolate cylindrical conducting boundary has been produced experimentally at Swarthmore Spheromak Experiment (SSX) [M. R. Brown et al., Phys. Plasmas6, 1717 (1999)]. It has m=1toroidal symmetry, helical distortion, and flat λ profile. Each of these observed characteristics are in agreement with the magnetically relaxed minimum magnetic energy Taylor state. The Taylor state is computed using the methods described by A. Bondeson et al. [Phys. Fluids24, 1682 (1981)] and by J. M. Finn et al. [Phys. Fluids24, 1336 (1981)] and is compared in detail to the measured internal magnetic structure. The lifetime of this nonaxisymmetric compact torus (CT) is comparable to or greater than that of the axisymmetric CTs produced at SSX; thus suggesting confinement is not degraded by its nonaxisymmetry. For both one- and two-spheromak initial state plasmas, this same equilibrium consistently emerges as the final state

    Exploiting Laboratory And Heliophysics Plasma Synergies

    Get PDF
    Recent advances in space-based heliospheric observations, laboratory experimentation, and plasma simulation codes are creating an exciting new cross-disciplinary opportunity for understanding fast energy release and transport mechanisms in heliophysics and laboratory plasma dynamics, which had not been previously accessible. This article provides an overview of some new observational, experimental, and computational assets, and discusses current and near-term activities towards exploitation of synergies involving those assets. This overview does not claim to be comprehensive, but instead covers mainly activities closely associated with the authors\u27 interests and reearch. Heliospheric observations reviewed include the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) on the National Aeronautics and Space Administration (NASA) Solar Terrestrial Relations Observatory (STEREO) mission, the first instrument to provide remote sensing imagery observations with spatial continuity extending from the Sun to the Earth, and the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Japanese Hinode spacecraft that is measuring spectroscopically physical parameters of the solar atmosphere towards obtaining plasma temperatures, densities, and mass motions. The Solar Dynamics Observatory (SDO) and the upcoming Solar Orbiter with the Heliospheric Imager (SoloHI) on-board will also be discussed. Laboratory plasma experiments surveyed include the line-tied magnetic reconnection experiments at University of Wisconsin (relevant to coronal heating magnetic flux tube observations and simulations), and a dynamo facility under construction there; the Space Plasma Simulation Chamber at the Naval Research Laboratory that currently produces plasmas scalable to ionospheric and magnetospheric conditions and in the future also will be suited to study the physics of the solar corona; the Versatile Toroidal Facility at the Massachusetts Institute of Technology that provides direct experimental observation of reconnection dynamics; and the Swarthmore Spheromak Experiment, which provides well-diagnosed data on three-dimensional (3D) null-point magnetic reconnection that is also applicable to solar active regions embedded in pre-existing coronal fields. New computer capabilities highlighted include: HYPERION, a fully compressible 3D magnetohydrodynamics (MHD) code with radiation transport and thermal conduction; ORBIT-RF, a 4D Monte-Carlo code for the study of wave interactions with fast ions embedded in background MHD plasmas; the 3D implicit multi-fluid MHD spectral element code, HiFi; and, the 3D Hall MHD code VooDoo. Research synergies for these new tools are primarily in the areas of magnetic reconnection, plasma charged particle acceleration, plasma wave propagation and turbulence in a diverging magnetic field, plasma atomic processes, and magnetic dynamo behavior
    corecore